58 lines
1.5 KiB
Python
58 lines
1.5 KiB
Python
#
|
|
# Demo 3c: Recursive normalized cuts (full version)
|
|
#
|
|
# author: Christos Choutouridis <cchoutou@ece.auth.gr>
|
|
# date: 06/07/2025
|
|
#
|
|
|
|
try:
|
|
from scipy.io import loadmat
|
|
import matplotlib.pyplot as plt
|
|
import numpy as np
|
|
#Project requirements
|
|
from image_to_graph import image_to_graph
|
|
from normalized_cuts import n_cuts_recursive
|
|
except ImportError as e:
|
|
print("Missing package:", e)
|
|
print("Run: pip install -r requirements.txt")
|
|
exit(1)
|
|
|
|
def plot_recursive_clusters(image, labels, title, fname):
|
|
M, N, _ = image.shape
|
|
segmented = labels.reshape(M, N)
|
|
plt.imshow(segmented, cmap='tab20') # tab20 supports up to 20 unique colors
|
|
plt.title(title)
|
|
plt.axis('off')
|
|
plt.tight_layout()
|
|
plt.savefig(fname)
|
|
print(f"Saved: {fname}")
|
|
plt.close()
|
|
|
|
|
|
def run_demo3c(T1: float, T2: float):
|
|
data = loadmat("dip_hw_3.mat")
|
|
|
|
for name in ["d2a", "d2b"]:
|
|
img = data[name]
|
|
print(f"\n=== Recursive n_cuts on {name} ===")
|
|
|
|
affinity = image_to_graph(img)
|
|
labels = n_cuts_recursive(affinity, T1=T1, T2=T2)
|
|
|
|
num_clusters = len(np.unique(labels))
|
|
print(f" Clusters found: {num_clusters}")
|
|
print(f" Labels: {np.unique(labels)}")
|
|
|
|
plot_recursive_clusters(
|
|
img,
|
|
labels,
|
|
title=f"{name} - recursive n_cuts (T1={T1}, T2={T2})",
|
|
fname=f"plots/demo3c_{name}_recursive_T1-{T1}_T2-{T2}.png"
|
|
)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
run_demo3c(5, 0.2)
|
|
run_demo3c(5, 0.95)
|
|
run_demo3c(5, 0.975)
|