Christos Choutouridis пре 4 година
родитељ
комит
c37b76911c
5 измењених фајлова са 264 додато и 87 уклоњено
  1. +2
    -2
      Q6-cache/Makefile
  2. +10
    -2
      Q6-cache/info.txt
  3. +110
    -0
      Q6-cache/src/main.c
  4. +112
    -83
      Q6-cache/src/matmul.c
  5. +30
    -0
      Q6-cache/src/matmul.h

+ 2
- 2
Q6-cache/Makefile Прегледај датотеку

@@ -86,8 +86,8 @@ include $(wildcard $(DEP))
$(BUILD_DIR)/$(TARGET): $(OBJ)
@mkdir -p $(@D)
@echo Linking to target: $(TARGET)
@echo $(CXX) $(LDFLAGS) -o $(@D)/$(TARGET) '$$(OBJ)'
@$(CXX) $(LDFLAGS) -o $(@D)/$(TARGET) $(OBJ)
#@echo $(CXX) $(LDFLAGS) -o $(@D)/$(TARGET) '$$(OBJ)'
$(CXX) -o $(@D)/$(TARGET) $(OBJ) $(LDFLAGS)
@echo
@echo Print size information
@$(CSIZE) $(@D)/$(TARGET)


+ 10
- 2
Q6-cache/info.txt Прегледај датотеку

@@ -1,9 +1,17 @@
Επεξεργαστής: Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz
Συχνότητα επεξεργαστή: 800 - 2600 MHz
Μέγεθος μνήμης L1: 192 KiB / 192 KiB (L1d/L1i)
Μέγεθος μνήμης L1: 192 KiB / 192 KiB
Μέγεθος μνήμης L2: 1.5 MiB
Μέγεθος μνήμης L3: 12 MiB
Μέγεθος μνήμης RAM: 31893MiB
Μέγεθος μνήμης RAM: 31893 MiB
Έκδοση gcc: 9.2.1 20191008 (Ubuntu 9.2.1-9ubuntu2)
Έκδοση Λειτουργικού Συστήματος: Ubuntu 19.10 x86_64

Διάμεσος χρόνος εκτέλεσης: 50984.906000 [msec]
Τυπική απόκλιση: 221.533052 [msec]

Βήμα 1: Λόγος διάμεσων χρόνων: 20.265193309

Βήμα 2: Λόγος διάμεσων χρόνων: xxxx

Βήμα 3: Λόγος διάμεσων χρόνων: xxxx

+ 110
- 0
Q6-cache/src/main.c Прегледај датотеку

@@ -0,0 +1,110 @@
/*!
\file main.c
\brief Matrix multiplication implementation.

\author Nikos Pitsianis
\author Dimitris Floros
\author Christos Choutouridis 8997 <cchoutou@ece.auth.gr>
\date 2020-05-05
*/

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <math.h>
#include <sys/time.h>
#include <assert.h>

#include "matmul.h"

extern double sqrt (double);

int cmpfunc (const void * a, const void * b) {
double v =*(double*)a - *(double*)b;
return (v < 0) ? -1 : (v > 0) ? 1 : 0;
}

double median (double* t, size_t n) {
qsort ((void*)t, n, sizeof(t[0]), cmpfunc);
return (n % 2) ? t[n/2] : (t[n/2] + t[n/2 -1]) /2;
}

double std_deviation (double* t, size_t n) {
double av =0;
for (size_t i=0 ; i<n ; ++i) {
av += t[i];
}
av /= n;
double s =0;
for (size_t i=0 ; i<n ; ++i) {
s += (t[i]-av)*(t[i]-av);
}
return sqrt (s/n);
}

mMult_ft multSelect (char* order) {
if (! strcmp ((const char*)order, "ijk")) return matrixMult_ijk;
else if (! strcmp ((const char*)order, "ikj")) return matrixMult_ikj;
else if (! strcmp ((const char*)order, "jik")) return matrixMult_jik;
else if (! strcmp ((const char*)order, "jki")) return matrixMult_jki;
else if (! strcmp ((const char*)order, "kij")) return matrixMult_kij;
else if (! strcmp ((const char*)order, "kji")) return matrixMult_kji;
else return matrixMult_ijk;
}



/*!
* A unit testing like main function to profile our code
*/
int main(int argc, char **argv) {
struct timeval start, end; /* time structs */
double time[MAX_ITER] = {0.0}; /* execution time array in ms */
float *A, *B, *C; /* matrix declarations */

/* read matrix size (or use default) */
if (argc != 3){
fprintf( stderr,
"Usage:\n"
"%s n order, where \n"
" n: is the matrix size.\n"
" order: the loop order ex: ijk , jik, ...\n",
argv[0]);
exit(1);
}
int n = atoi( argv[1] );
mMult_ft mMult = multSelect(argv[2]);

/* initialize matrices */
A = matrixInit( n );
B = matrixInit( n );
C = (float *) malloc( n*n*sizeof(float) );

/* compute matrix multiplication */
for (int it = 0; it < MAX_ITER; it++) {
gettimeofday(&start, NULL);
mMult( C, A, B, n );
gettimeofday(&end, NULL);

time[it] = (end.tv_sec - start.tv_sec) * 1000.0 + /* sec to ms */
(end.tv_usec - start.tv_usec) / 1000.0; /* us to ms */

printf("Iter: %d Time: %f ms\n", it, time[it]);
}

/* we need to use the result -- verify it */
for (int i = 0; i < n; i++) { /* rows */
for (int j = 0; j < n; j++) { /* cols */
float gold = 0;
for (int k = 0; k < n; k++) { /* accumulate products */
gold += A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
}
assert( (gold - C[sub2ind(i,j,n)]) < 1e-3 );
}
}

// statistical data
printf ("Median: %f [msec]\n", median (time, MAX_ITER));
printf ("Std.Dev: %f [msec]\n", std_deviation(time, MAX_ITER));
}


+ 112
- 83
Q6-cache/src/matmul.c Прегледај датотеку

@@ -7,48 +7,139 @@
\author Christos Choutouridis 8997 <cchoutou@ece.auth.gr>
\date 2020-05-05
*/

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <sys/time.h>
#include <assert.h>

#define MAX_ITER 10
#define sub2ind(i,j,n) (j) + (i)*(n)
#include "matmul.h"

/*!
* Square Matrix multiplication
* Square Matrix multiplication - ijk
* \param C pointer to output matrix
* \param A pointer to input matrix A
* \param B pointer to input matrix B
* \param n Size of matrices (both sizes)
* \return none
*
* \note
* This version executes row major order ijk
*/
void matrixMult(float * const C, float const * const A, float const * const B, int const n) {
void matrixMult_ijk(float * const C, float const * const A, float const * const B, int const n) {
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j) {
int k =0;
C[ sub2ind(i,j,n) ] = A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
for (k = 1; k < n; ++k)
C[ sub2ind(i,j,n) ] += A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
}
}

for (int i = 0; i < n; i++) { /* rows */
for (int j = 0; j < n; j++) { /* cols */
C[ sub2ind(i,j,n) ] = 0; /* initialize output value */
for (int k = 0; k < n; k++) { /* accumulate products */
C[ sub2ind(i,j,n) ] +=
A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
/*!
* Square Matrix multiplication - ikj
* \param C pointer to output matrix
* \param A pointer to input matrix A
* \param B pointer to input matrix B
* \param n Size of matrices (both sizes)
* \return none
*/
void matrixMult_ikj(float * const C, float const * const A, float const * const B, int const n) {
for (int i = 0; i < n; ++i)
for (int k = 0; k < n; ++k) {
if (!k) {
for (int j = 0; j < n; ++j)
C[ sub2ind(i,j,n) ] = A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
} else {
for (int j = 0; j < n; ++j)
C[ sub2ind(i,j,n) ] += A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
}
}
}

/*!
* Square Matrix multiplication - jik
* \param C pointer to output matrix
* \param A pointer to input matrix A
* \param B pointer to input matrix B
* \param n Size of matrices (both sizes)
* \return none
*/
void matrixMult_jik(float * const C, float const * const A, float const * const B, int const n) {
for (int j = 0; j < n; j++)
for (int i = 0; i < n; i++) {
int k =0;
C[ sub2ind(i,j,n) ] = A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
for (k = 1; k < n; k++)
C[ sub2ind(i,j,n) ] += A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
}
}

/*!
* Square Matrix multiplication - jki
* \param C pointer to output matrix
* \param A pointer to input matrix A
* \param B pointer to input matrix B
* \param n Size of matrices (both sizes)
* \return none
*/
void matrixMult_jki(float * const C, float const * const A, float const * const B, int const n) {
for (int j = 0; j < n; ++j)
for (int k = 0; k < n; ++k) {
if (!k) {
for (int i = 0; i < n; ++i)
C[ sub2ind(i,j,n) ] = A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
} else {
for (int i = 0; i < n; ++i)
C[ sub2ind(i,j,n) ] += A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
}
}
}

/*!
* Square Matrix multiplication - kij
* \param C pointer to output matrix
* \param A pointer to input matrix A
* \param B pointer to input matrix B
* \param n Size of matrices (both sizes)
* \return none
*/
void matrixMult_kij(float * const C, float const * const A, float const * const B, int const n) {
for (int k = 0; k < n; ++k) {
if (!k) {
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
C[ sub2ind(i,j,n) ] = A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
} else {
for (int i = 0; i < n; ++i)
for (int j = 0; j < n; ++j)
C[ sub2ind(i,j,n) ] += A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
}
}
}

/*!
* Square Matrix multiplication - kji
* \param C pointer to output matrix
* \param A pointer to input matrix A
* \param B pointer to input matrix B
* \param n Size of matrices (both sizes)
* \return none
* xxx
*/
void matrixMult_kji(float * const C, float const * const A, float const * const B, int const n) {
for (int k = 0; k < n; ++k) {
if (!k) {
for (int j = 0; j < n; ++j)
for (int i = 0; i < n; ++i)
C[ sub2ind(i,j,n) ] = A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
} else {
for (int j = 0; j < n; ++j)
for (int i = 0; i < n; ++i)
C[ sub2ind(i,j,n) ] += A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
}
}
}


/*!
* Initialize matrix with random indices and return the matrix pointer.
*
* \param n The size of the matrix (both of them)
* \return Pointer to allocated and initialized matrix
*/
float * matrixInit(int const n) {
float* matrixInit(int const n) {

float *M = (float *) malloc( n*n*sizeof(float) );

@@ -59,67 +150,5 @@ float * matrixInit(int const n) {
return M;
}

int cmpfunc (const void * a, const void * b) {
double v =*(double*)a - *(double*)b;
return (v < 0) ? -1 : (v > 0) ? 1 : 0;
}

/*!
* A unit testing like main function to profile our code
*/
int main(int argc, char **argv)
{

struct timeval start, end; /* time structs */
double time[MAX_ITER] = {0.0}; /* execution time array in ms */
float *A, *B, *C; /* matrix declarations */
int n; /* matrix size */

/* read matrix size (or use default) */
if (argc != 2){
fprintf( stderr, "Usage:\n %s n\n where n is the matrix size.\n",
argv[0]);
exit(1);
}
n = atoi( argv[1] );
/* initialize matrices */
A = matrixInit( n );
B = matrixInit( n );
C = (float *) malloc( n*n*sizeof(float) );
/* compute matrix multiplication */
for (int it = 0; it < MAX_ITER; it++) {
gettimeofday(&start, NULL);
matrixMult( C, A, B, n );
gettimeofday(&end, NULL);

time[it] = (end.tv_sec - start.tv_sec) * 1000.0 + /* sec to ms */
(end.tv_usec - start.tv_usec) / 1000.0; /* us to ms */
printf("Iter: %d Time: %f ms\n", it, time[it]);
}

/* we need to use the result -- verify it */
for (int i = 0; i < n; i++) { /* rows */
for (int j = 0; j < n; j++) { /* cols */

float gold = 0;

for (int k = 0; k < n; k++) { /* accumulate products */
gold += A[ sub2ind(i,k,n) ] * B[ sub2ind(k,j,n) ];
}

assert( (gold - C[sub2ind(i,j,n)]) < 1e-3 );
}
}

// median calculation
qsort ((void*)time, MAX_ITER, sizeof(time[0]), cmpfunc);
printf("Median: %f [msec]\n", (MAX_ITER % 2) ?
time[MAX_ITER/2] :
(time[MAX_ITER/2] + time[MAX_ITER/2 -1]) /2
);
}


+ 30
- 0
Q6-cache/src/matmul.h Прегледај датотеку

@@ -0,0 +1,30 @@
/*!
\file matmul.h
\brief Matrix multiplication implementation.

\author Nikos Pitsianis
\author Dimitris Floros
\author Christos Choutouridis 8997 <cchoutou@ece.auth.gr>
\date 2020-05-05
*/
#ifndef SRC_MATMUL_H_
#define SRC_MATMUL_H_

#include <stdlib.h>

#define MAX_ITER 10
#define sub2ind(i,j,n) (j) + (i)*(n)

//! Function pointer type to matrix multiplication back-end.
typedef void (*mMult_ft)(float * const C, float const * const A, float const * const B, int const n);

void matrixMult_ijk(float * const C, float const * const A, float const * const B, int const n);
void matrixMult_ikj(float * const C, float const * const A, float const * const B, int const n);
void matrixMult_jik(float * const C, float const * const A, float const * const B, int const n);
void matrixMult_jki(float * const C, float const * const A, float const * const B, int const n);
void matrixMult_kij(float * const C, float const * const A, float const * const B, int const n);
void matrixMult_kji(float * const C, float const * const A, float const * const B, int const n);

float* matrixInit(int const n);

#endif /* SRC_MATMUL_H_ */

Loading…
Откажи
Сачувај